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Pulmonary Toxicology of Silica, Coal
and Asbestos
by A. G. Heppleston*

Mineral particles are customarily inhaled as mixtures, though one component may predominate and
determine the response. Although the lesions often possess a characteristic structure, according to the
main type of particle deposited, morphology affords little indication of pathogenesis. Being a major
element in the evolution of dust lesions, macrophage behavior has been examined extensively in vitro after
treatment with mineral particles, attention being directed to membrane and biochemical changes; however,
no clear lead to the origin of the lesions has emerged.
Pulmonary fibrosis, as one of the ultimate consequences of dust accumulation, required a direct in vitro

approach in which the products of the macrophage-particle interaction were utilized to provoke collagen
formation by fibroblasts in a two-phase system. By this means, silica and asbestos stimulated connective
tissue formation and application of the technique to coal dusts appears promising. Coal workers may
develop a peculiar type of emphysema in relation to lesions whose fibrous content is comparatively small.
Type II alveolar epithelium is also stimulated by inhaled particles and lipid accumulation follows.

Alveolar lipidosis interferes with the fibrotic response by preventing contact between macrophage and
particles. This phenomenon may account in part for anomalies, apparent in coal workers, between
epidemiological findings and dust composition.
Carcinogenesis is a well-recognized feature of asbestos exposure, but, as with fibrosis, risk prediction on

the basis of in vitro tests of cytotoxicity is premature and may not be valid.

The Minerals
A mineral may be defined as a naturally occurring

crystalline, inorganic compound or element and, in the
present context, the important fraction is the respirable
one, i.e., that fraction capable of penetrating to the
alveolar region. In the case of compact particles, such as
coal or silica, the respirable diameter is - 5 ,um. For
fibrous particles, such as asbestos, diameter predominantly
determines falling speed and an upper limit of about 3
,um regulates respirability.

Silicon and oxygen are the major elements of the
earth's crust, so that any extraction procedure presents
a potential risk of silicosis, as do the uses to which the
mineral is put. Silicon dioxide exists in a tetrahedrally
coordinated form, a silicon atom lying centrally and its
four oxygen atoms being shared with neighboring
atoms of silicon. The term free silica refers to the
uncombined state, which exists in crystalline, crypto-
crystalline and amorphous forms. Each form possesses
its own arrangement of the tetrahedra. At atmospheric
pressure, quartz is the stable crystal with tridymite and
cristobalite being metastable types formed at higher
temperatures than quartz. Coesite and stishovite are
crystalline varieties produced by very high temperatures
and pressures, the former having a tetrahedral structure
but the latter being octahedral (like titanium dioxide) in
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which six shared oxygen atoms are attached to each
atom of silicon. Flint and agate fall into the crypto-
crystalline category, while diatomite, vitreous and
sublimed silica are amorphous, in that the tetrahedra
lack regular arrangement. Combined silica refers to
silicon dioxide bound in complex ways to various cations,
that is to silicates among which asbestos is biologically
most important.

Airborne dust in coal mines is a complex mixture,
mainly derived from coal seam but also from associated
rock strata. Coal itself is not a uniform substance,
lignite, bituminous coal and anthracite representing
rising ranks that exhibit increasing content of carbon
and decreasing content of oxygen. The minerals in
respirable dust from coal mines are derived mainly from
the non-coal strata, and in British samples, quartz
comprised a mean of 4.5% with higher proportions of
kaolin and mica (1). In Welsh collieries, however, the
airborne dust contained about 2% free silica (1,2).

Asbestiform minerals exhibit high aspect (length:
diameter) ratios, the fibers being flexible and possessing
high tensile strength. Asbestos (meaning unquenchable)
is the collective term for varieties of certain hydrated
silicates, which also exist in nonfibrous form. Chrysotile
(serpentine) asbestos is a layered silicate in which an
outer layer of octahedrally coordinated rmagnesium
cations, presenting as brucite [Mg(OH)2], is linked by
shared oxygen atoms with an inner tetrahedrally
coordinated silicate layer, the fibril possessing a scroll or
tubular structure on section and longitudinal curvatures.
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Amphibole types of asbestos are strong chains of silica
tetrahedra connected by octahedrally coordinated cations,
which in crocidolite comprise sodium and iron, in
amosite magnesium and iron, in anthophyllite magnesium
and in tremolite calcium and magnesium:

Fibers have customarily been defined as possessing
an aspect ratio of 3:1, but many minerals cleave into
such fragments and a ratio of 20:1 would ensure that
most asbestos particles were included (3). Counting
fibers by optical and electron microscopy gave excellent
correlation with fibers > 5 ,um long, and most fibers had
an aspect ratio > 10:1 (4). Whiskers, which are metallic
or ceramic filaments of single crystals, represent the
synthetic analog of asbestos fibers.
The mining and use of asbestos, especially chrysotile,

has increased enormously over the last 60 years. Apart
from direct industrial exposure, which includes lagging
and shipbreaking, workers near to processing plants
may inhale asbestos, while nonindustrial and domestic
exposures have occurred from proximity to mines or
factories and from dust-impregnated clothing.

Silica
Silica as inhaled by man is usually in the stable,

crystalline form of quartz and provides a valuable tool in
the analysis of fibrogenesis.

Morphology
The mature silicotic nodule appears as a relatively

inactive structure, typically located in relation to
respiratory bronchioles. A small nodule usually exhibits
three zones, the inner one consisting of hyaline connective
tissue with a whorled arrangement, a midzone of
concentrically disposed fibers, and a more cellular outer
zone of dust-laden macrophages (often bearing car-
bonaceous material as well as silica and so appearing
black) mingled with a loose and irregular network of
collagen or reticulin. Particles of silica, as revealed by
microincineration, are concentrated in the outer zone.
Enlargement of nodules may continue after cessation of
exposure. The most characteristic aspect of the classical
silicotic nodule is its exuberant and peculiarly disposed
fibrosis. Since respiratory bronchioles are thereby
compressed, emphysema is not an integral feature.
The evolution of the silicotic nodule is difficult to

judge from human material, but experimental evidence
suggests that the sequence of events comprises (a)
phagocytosis of quartz particles deposited widely over
the alveolar surface, (b) aggregation ofladen macrophages
around respiratory bronchioles, especially the more
proximal ones, (c) disintegration of macrophages with
liberation of their load, (d) progressive accumulation of
phagocytes in the usual location to reingest the particles,
(e) the formation of collagen among the phagocytes and
(f) hyalinization. These events are not sharply divided,
and, because they overlap, the precise connections
between them cannot be discerned in vivo; to do so

requires the parallel deployment of in vitro techniques.
The deposition and translocation within the lung and
lymphatic system of particles, whether highly or poorly
siliceous in content, has been considered elsewhere
(5-9).

Cytotoxicity
Signs of cell damage may be detected by changes in

membrane permeability and in metabolism. The former
may be recognized by penetration of a dye while the
latter is reflected largely by release of cellular enzymes.
A variety of cell types has been employed, especially
peritoneal or alveolar macrophages primarily derived
from rodents or lagomorphs. The use of various agents
to increase the yield of cells is to be deprecated since
such cells, having already been provoked, may not react
qualitatively or quantitatively to particle ingestion as do
unstimulated cells. Natural sources of cells have lately
been supplemented by permanent phagocytic lines
derived from a mouse macrophagelike tumor (P388D1),
Chinese hamster lung (V79-4) and a human Iype II
alveolar epithelial tumor (A549), the intention being to
standardize the target. However, variations in response
to particles sometimes exhibited by cells from natural
sources-possibly according to species, individuals or
site of origin-may themselves be important in vivo,
and, under natural conditions, alveolar Type II epithe-
lium cannot be considered as phagocytic, its function
being essentially secretory (10). To isolate the mem-
brane effect, the reaction of particles with erythrocytes
from different species has been utilized extensively.
Because both the red cell membrane and silica carry

net negative surface charges -in erythrocytes probably
contributed mainly by sialic acid residues-simple
electrostatic attraction may be eliminated. The toxicity
of silica has been attributed to hydrogen donation by
polymeric silicic acid, forning hydrogen-bonded complexes
notably with phospholipids of cell membranes (11). The
effect of the polymer polyvinylpyridine-N-oxide (PNO)
bore out this view, since the compound, first used in
experimental pneumoconiosis (12,13) and later applied
to macrophages in culture (14,15), prevented the destruc-
tive action of silica. PNO was considered to establish
hydrogen bonds preferentially with silicic acid, which
could not then react with biological membranes whose
integrity was thereby preserved. PNO greatly dimin-
ished quartz hemolysis (16). Opposed to a silica-lipid
interaction at the cell surface, was the view that the
reaction occurred between silica and a protein compo-
nent, which being abstracted weakened the red cell
membrane (17).
The high affinity of silica, colloidal or particulate, for

the positively charged trimethylammonium groups on
the membrane surface may be responsible for hemolysis,
since this effect was inhibited by tetramethylammonium
ions, which were thought to be adsorbed onto silica
(18-20). Aluminated silica was found to be as toxic as
pure silica to erythrocytes with a low sialic acid content
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(as in sheep) but much less damaging than silica when
the cell membrane possessed a high level of sialic acid
(as in the horse), an effect eliminated by neuraminidase.
Rather than hydrogen-bonding of PNO and silica,
adsorption was believed to depend on hydrophobic and
electrostatic interactions. However, while silica and
titanium dioxide carry negative charges, only silica is
hemolytic, indicating that an additional determinant is
concerned. Another view of the mechanism of hemolysis
involves adsorption onto the particle of cell constituents
such as red cell ghosts or synthetic liposomes of
dipalmitoyl lecithin (DPL) (21), though the conditions of
culture affected hemolysis by both compact and fibrous
particles (22). The toxicity of particles, especially in
medium containing serum, has tentatively been ascribed
to changes ofmembrane potential and cell input resistance
in guinea pig alveolar macrophages and P388D1 cells
(23,24), but the electrical changes could well be a
secondary effect of dust contact and ingestion. Perox-
idation of membrane lipids is not believed to explain the
hemolytic or fibrogenic effects of quartz (25,26).

All the chemical or physicochemical reactions considered
focus attention on surface phenomenon, and the old
solubility theory, possessing too many inconsistencies to
be tenable (27,28), has been displaced. The surface
hydroxyl (silanol) groups are thought to be the adsorption
sites, since their destruction at high temperature
(converting them into siloxane groups) renders the
particles much less active biologically (29). Another
concept adopts the electron theory of catalysis, whereby
electrons are transferred between silica particles and
membranes. Measurements of the electron trap struc-
ture and configuration of silanol groups have therefore
been proposed as indicators of potential cytotoxicity and
possibly of fibrogenicity (29), but precise correlations
are awaited. Surface area as such may not offer a com-
plete explanation since increased particle number per
unit weight greatly augmented the hemolytic activity of
quartz whereas total surface area was comparatively
unimportant (30), an aspect also relevant to fibrogenesis.
Damage to membranes is reflected in biochemical

changes. Macrophages secrete many active agents (31),
and those that have been closely examined after ingestion
of silica include lysosomal acid hydrolases (such as acid
phosphatase and 3-glucuronidase) and cytoplasmic lactate
dehydrogenase (LDH). Macrophages take particles into
phagosomes by invagination of the surface membrane
with the formation of phagolysosomes, which at first
retain their enzyme complement but soon rupture to
release the enzymes into the cytoplasm and then into
the extracellular environment along with LDH; diamond
and aluminum-coated silica dusts employed as controls
induced no such changes in peritoneal macrophages
(32,33). The action of silica is nonselective (cf. asbestos),
while the inhibitory action of aluminum compounds on
cytotoxicity probably depends on the substitution of Al
ions for Si ions in the SiO2 lattice. PNO was taken into
phagosomes, and, if silica ingestion followed in polymer-
free medium, the two compounds came to lie in the

same phagolysosome and enzyme leakage was much
reduced irrespective ofwhether animals or macrophages
were pretreated (32, 34). Ultrastructurally, macrophages
reacted similarly to silica in vitro or in vivo (35-37), the
smaller dust burden achieved by inhalation of quartz
permitting a slower cellular reaction and better visuali-
zation of the ensuing toxic effects such as diffusion of
acid phosphatase into the cytoplasm. Enzyme release
has been applied quantitatively in vitro in order to
grade the cytotoxicity of particles. Measuring reduction
of triphenyltetrazolium chloride (TTC), tridymite and
cristobalite proved more toxic than quartz or amorphous
silica (38), but quartz and cristobalite have been considered
equally toxic (39). It cannot, however, be assumed that
quartz is a standard compound, since the source
apparently affects cytotoxicity to peritoneal and alveolar
macrophages as well as in vivo fibrogenicity, with which
quantitative enzyme assays do not always show a close
and consistent correspondence (40-42). These differences
are believed to depend on the presence of amorphous
silica, incorporation of foreign ions such as Al, tem-
perature influences during cooling of the magmatite and
possibly mode of mechanical disintegration. Toxicity of
quartz is much diminished by heating without detectable
surface change on infrared spectroscopy. Disparities
were also apparent in the protection against silica
afforded to cell membranes in vitro and against fibro-
genicity in vivo by certain water-soluble polymers, some
compounds protective to cultured cells being feeble
inhibitors of collagen synthesis in animals (43). Density
differences in the tetrahedrally coordinated forms of
crystalline silica may affect the accessibility of surface
reactive groups.
A simple though rather laborious test of toxicity

relies on assessment of cell viability by dye exclusion,
with the use of trypan blue or eosin. Dye penetration
into the cytoplasm implies pathological permeability of
the plasma membrane and along with retraction of
processes and damage to organelles presages cell death.
It thus offers a conclusive endpoint, and the proportion
of dying cells can be estimated microscopically. Silica
toxicity is, however, delayed in the presence of serum,
which has to be removed by enzymatic degradation
after particle incorporation into phagolysosomes. There
appear to be few direct comparisons of the value of dye
exclusion and enzyme release, bearing in mind that
LDH levels in macrophages are affected by elicitation
and cultural conditions (44).

Fibrogenesis
The degree of pulmonary fibrosis paralleled the

quantity of dust administered intratracheally both in
regard to quartz (45) and to tridymite (46). For the
typical nodules to develop in man, the lung dust usually
had at least 18% quartz (47), while in rats definite
fibrosis occurred only when the airborne and lung dusts
contained 20% or more of quartz (48). Inception of
experimental fibrosis by dust mixtures containing a

113



A. G. HEPPLESTON

lower proportion of quartz was obtained with clouds of
exceptionally high concentration (42). In smaller amounts,
quartz appears to be sufficiently isolated from contact
with cells or their organelles as to preclude its typical
pathological changes, though another possibility is
considered in discussing coal. The physical form of silica
may also affect the pulmonary response. Judged by the
speed and degree of fibrosis in rats after intratracheal
doses standardized as accurately as possible, the fibrotic
reaction was least with amorphous silica and increased
via quartz and cristobalite to a maximum with tridymite,
despite similar solubilities for all forms (49). On the
other hand, no differences were found in the peritoneal
granuloma masses caused by these varieties of silica or
in the responses to PNO (50). The high-pressure,
high-temperature forms of silica proved peculiar, in that
coesite (tetrahedrally coordinated) possessed only a
small fraction of the fibrogenic potency of quartz, while
stishovite (octahedrally coordinated) behaved as an inert
dust (51,52). To determine the influence of particle size
and surface area, flint, which contains both quartz and
cristobalite, was used in a range of sizes (53). At con-
stant weight, pulmonary fibrosis developed more rapidly
and was more severe as particle size diminished, while
at constant surface area the severity and rate of fibrosis
were maximal for particles of 1-2 ,um. These observa-
tions tended to implicate both particle size and surface
in fibrogenesis, but surface area has been considered
irrelevant (as also in regard to hemolysis), whereas par-
ticle size or the amount of silica retained was dominant
(54). Both these studies, however, suffer from the
defects of the tracheal route for injection of silica and
the assessment of fibrosis histologically.
Pulmonary fibrosis may be prevented by concurrent

exposure to aerosols of quartz and soluble compounds of
aluminum, especially the hydroxide, hydroxychloride or
chlorhydroxyallantoinate, but resolution of established
silicotic lesions proved less tractable, and withdrawal of
aluminum prophylaxis led to resumption of quartz
fibrosis (55). Other materials, notably metallic aluminum
and iron compounds, afforded variable protection and
the results have been summarized (56). Aluminum may
be beneficial because it is slowly released in soluble
form to react with the silica surface. Long-term
prophylaxis of silicosis by inhalation of metallic aluminum
dust in gold miners was claimed to be entirely successful,
with no ill effects from the aluminum dust itself being
observed (57), but dust suppression measures applied
concurrently could well take the credit. Metallic com-
pounds and PNO thus appear to act on the quartz
particles, the polymer protecting macrophages in vitro
and inhibiting fibrogenesis whether given by injection
or inhalation, as Schlipkoter and Brockhaus (12,13) first
demonstrated and as others have confirmed. Concentration
on membrane damage, especially to the macrophage,
has tended to divert attention from the possibility of
other intracellular reactions and from the fibroblast as
the collagen producer. The evidence adduced serves to
reinforce the suspicion that, because of their temporal

relationship, phagocytosis of siliceous particles is con-
nected with the subsequent fibrosis.
The nature of this connection was revealed only when

the two processes were allowed to proceed independently,
a distinction demanding cell culture (58,59). Using a
single synthetic medium supplemented to promote both
cell survival and hydroxyproline (HOP) formation,
peritoneal macrophages from rats were first incubated
with quartz particles, surviving cells disintegrated by
repeated freeze-thawing and the suspension separated
into deposit and supernatant. The latter then replaced
the medium of independently grown chick embryo
fibroblasts, whose HOP and DNA contents were estimated
2 or 4 days later. A variety of control procedures was
run in parallel and several conclusions emerged. The
extract from the macrophage-quartz reaction repeatedly
led to a highly significant elevation of HOP formation by
fibroblasts, whereas particulate quartz or silica dissolved
in the medium were without effect when applied directly
to fibroblasts. Furthermore, extracts from untreated
macrophages had no comparable effect and disintegrated
cells did not react with quartz. The latter observation
suggested that simply damaging the cell membranes
was inadequate to account for the fibrogenic effect of
quartz and hence that an essential reaction took place
with other cell constituents. Pretreatment of macrophages
with PNO abolished the quartz effect, which thus
appeared to have two components, an initial attack on
membranes and a subsequent intracellular reaction
leading to the formation or release of a macrophage
fibrogenic factor (MFF). In contrast to the supernatant,
the residue from macrophage-quartz cultures inhibited
collagen production. Throughout, DNA levels offibroblasts
were unchanged, so indicating that the active agent
stimulated functional activity but not proliferation.
Titanium dioxide, a white powder of fine dimensions
and without fibrogenic capacity in vivo, was employed
in parallel with quartz but lacked stimulatory action.
Inhaled particles are taken up by alveolar macrophages,
which differ in several physiological respects from cells
of peritoneal origin, but when subjected to the same
procedure also produced MFE

Confirmatory evidence has come from a number of
sources, employing the same basic system but adopting
technical variations and refinements (60), with Kulonen
and his colleagues making notable contributions towards
characterization of the MFF They have shown the
factor to be a soluble homogeneous, acidic protein of
molecular weight 14,300 (61,62), against which a neu-
tralizing antiserum could be raised (63). The MFF may
stabilize fibroblast RNA possibly by suppression ofmac-
rophage RNase, though collagen formation may be spe-
cifically activated (63). The 700 to 5000g sediment of
normal disintegrated macrophages reacted with quartz
to produce the factor (64), thereby stressing the
intracellular site of reaction, identification of which
remains to be established along with final characterization
of the MFF for which mass production of macrophages
is needed. Quartz, after being taken into phagosomes,
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was liberated into the cytoplasm before being enclosed
by secondary membranes that could be of Golgi origin
and free ribosomes were much increased (65); the MFF
might be formed in these secondary lysosomes. The
target cell for the MFF in vivo can hardly be other than
the interstitial fibroblast, exposed by silica-induced
damage to the Type I alveolar epithelium as revealed
ultrastructurally (66).
In vitro observations have proceeded sufficiently to

enquire how far they bear on the in vivo reaction to
quartz. Silica-treated macrophages promoted collagen
formation in vivo (67), while rheumatoid synovial extracts
reacted with macrophages to form a supernatant which
stimulated collagen formation (64,67). Extract of mouse
liver after tetrachloride necrosis was also active, and
the effect may be mediated by Kupffer cells which
belong to the mononuclear phagocytic system (67-69).
Human monocytes and macrophages as well as lines of
human histiocytic lymphoma cells and transformed
mouse macrophages proved effective targets for genera-
tion of the MFF by silica (70). The evidence now
available thus suggests a wider relevance for the MFF,
encouraging the belief that it may be applicable, no
doubt with modifications, to the process of fibrosis in
general, where a variety of provocative agents may
operate. A scheme that covers the known and suspected
interactions has been outlined (60).
Another approach to the pathogenesis of silicosis

deployed diffusion chambers, by which silica within
could be separated from cells without after insertion
into the peritoneal cavity or subcutaneously With
membranes of pore size 0.3 to 0.5 ,um (71) or < 0.1 ,um
(72), no reaction occurred around chambers containing
quartz or tridymite and the results were opposed to the
silica solubility theory of fibrogenesis. However, using
four forms of silica, with a Stokes diameter of 0.5 to 2
lim, as well as a dried silica gel of particle size 20 to 30
nm (i.e., less than the pore size of < 0.1 ,um), colloidal
silicic acid did not escape from the chambers in a
concentration or at a rate sufficiently high to have a
fibrotic effect (73). All five forms of silica were fibrogenic
when brought into direct contact with peritoneal tissues.
When macrophages and silica were enclosed together
and the chambers implanted intraperitoneally, no
surrounding fibrosis developed (74). The claim of dose-
related fibrotic response (75) suffered from the fact that
the pore size was 0.8 R,m, which not only permitted
escape of the finer silica particles but also allowed
cell-cell contact from either side. A membrane with
cylindrical pores of a fairly uniform 0.05 ,um diameter
prevented direct cell contact (76). Quartz particles of
respirable size enclosed with mouse peritoneal macro-
phages induced less fibrosis in the peritoneum of
syngeneic animals than cells alone, while with silica on
its own the changes were similar to control chambers
either empty or medium-filled. This failure to excite
fibrosis with a macrophage-silica combination again
reflects the inadequacy ofthe diffusion chamber technique
to elucidate the sequence of in vivo reactions to silica,

since the finite number of cells was soon eliminated, and
in the absence of recruitment no further interaction was
possible.

Lipid Participation
Inhaled silica reacts not only with alveolar macrophages

but also with alveolar epithelium, especially the Type II
cell to which the weight of evidence ascribes the
production of lipids notably dipalmitoyl lecithin (DPL)
via the osmiophilic lamellar bodies. Although lipid
accumulation has been recognized as a component of the
silicotic response, its significance remained obscure.
Specific pathogen-free rats exposed to quartz inhalation
developed widespread alveolar consolidation by amorphous
material with hyperplasia and enzyme hyperactivity of
Type II cells, macrophages gradually disappearing though
quartz particles remained in the alveolar material (77).
Electron microscopy showed the latter to contain quadratic
lattices and lamellae, typical of phospholipid in the
liquid-crystalline phase, along with extruded lamellar
bodies that were often fragmented (66). In these
respects, the experimental disease closely resembled
the human counterpart, to both of which the term lipo-
proteinosis should be applied so as to stress the essen-
tially lipid nature of the reaction. Protein constitutes
only a minor and possibly incidental element, while its
binding to lipid appears to be artifactual (78). Bio-
chemically, phospholipids were much more affected than
neutral lipids, with DPL showing the maximum elevation.
Metabolic studies with labelled palmitate in the early
stages of the disorder established that, although the
rate ofDPL decay was raised, its rate of production was
greater, so that the net effect was a steady accumulation
in the alveoli (79,80). In consequence of the paucity of
macrophages and the dispersion of quartz particles in
the alveolar lipid, the macrophage-quartz reaction was
prevented and fibrotic nodules failed to develop, while
the stimulus to Type II cells subsided and the consolidation
remained, possibly aided by loss of phospholipase acti-
vation in macrophages by quartz (81). The biophysical
features of rat lungs consolidated by lipo-proteinosis
were consistent with the accumulation of surface-active
agents (82) as was also the case after brief exposure to
quartz inhalation (83). The rate at which quartz particles
were deposited in the alveoli appeared to determine
whether fibrosis or lipidosis predominated; prolonged
exposure and low concentration favored fibrosis, while
relatively short exposure to high concentration encour-
aged lipidosis (59). The latter situation obtained in men
engaged in sandblasting (an occupation proscribed in
Britain), the response to which comprises a mixture of
atypical fibrosis combined with lipidosis in the adjacent
parenchyma.

Silica toxicity would soon deplete the normal com-
plement of alveolar macrophages and abolish generation
of the MFF, so a mechanism should exist to ensure their
continuing availability. As a component ofthe mononuclear
phagocytic system, macrophages are ultimately derived
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from the marrow, though under normal conditions in
vitro evidence suggested that division of precursors
pausing interstitially served to replace macrophages
lost by disintegration or bronchial excretion (84,85).
However, cytodynamic observations after inhalation of
quartz by mice afforded no indication of cell proliferation
in relation to dust aggregates, a phenomenon explicable
by rapid emigration of monocytes into the alveoli (86).
Since local proliferation did not offer a satisfactory basis
for macrophage maintenance in the presence of an
irritant, the alternative was systematic recruitment.
Functional stimulation of the mononuclear phagocytic
system for long periods followed intraperitoneal and
intratracheal administration of silica, and lipids also
elevated the phagocytic index (87). Endogenous lipid,
derived from the lungs ofrats with alveolar lipoproteinosis
and evidently contributed by Type II cells and alveolar
macrophages, was therefore utilized parenterally in
other rats and the cell kinetics ofthe marrow mononuclear
series studied (88). The duration of DNA synthesis and
the cell-cycle time of promonocytes was reduced and
their rate of entry into DNA synthesis increased in
lipid-treated as compared with untreated rats. Accordingly
it may be proposed that a powerful pulmonary irritant
such as quartz, in stimulating local lipid formation,
provides a positive feedback to the marrow and leads to
proliferation of the monocytic series. It is thus possible
to comprehend how the population of alveolar macrophages
is maintained at a level much in excess of normal
requirements and also how the feedback of lipid may
subside as quartz particles increasingly become isolated
in the alveolar material from contact with the Type II
cells. The means by which monocytes travel from
capillaries to the sites of need within alveoli has yet to
be established with finality, but inferential evidence
suggests that chemotactants and augmented vascular
permeability could well be concerned (60). A role has
been suggested for the products, especially lipids, of
macrophage breakdown under the influence of quartz in
the recruitment ofphagocytes, predominantly neutrophils
(89). Such a view overlooks the involvement of lipid
feedback from Type II cell products, and they could
have been the active agents, since lung macrophages
ingest surfactant.

Coal
Although coal worker's pneumoconiosis (CWP) and

silicosis are embraced by the term pneumoconiosis, they
are distinct entities and should not be confused by
applying the designation of silicosis or anthracosilicosis
to the disease in coal workers.

Morphology
Since the collection of inhaled compact particles in

the lung follows a similar pattern irrespective of the
nature of the dust, the simple lesion produced by coal is
situated at the same site as the silicotic nodule, that is

in relation to respiratory bronchioles especially those of
first and second orders. Alveoli opening into or abutting
on respiratory bronchioles become consolidated by tightly
packed masses of coal-laden macrophages, among which
reticulin fibers are gradually laid down and in some
cases collagen also forms perhaps with a few fibroblasts.
The respiratory bronchioles are transformed into more
or less smooth tubes encased in a sheath of dust-
consolidated parenchyma. In many, though not all, cases
these same bronchioles undergo dilatation of varying
degree, so giving rise to proximal acinar emphysema
(90-92). Because of their location in relation to the apex
ofthe lung acinus, the aggregates of coal are customarily
seen as discrete lesions of which there may be up to five,
measuring up to 5 or 6 mm across, in a secondary lobule
and which in transverse section possess a stellate
appearance often with enlarged air spaces in and around
them. The emphysema is sometimes sufficiently severe
that neighboring lesions coalesce and the originally
circumscribed form of the dust aggregates may be
obscured. In contrast to the silicotic nodule, the simple
dust lesion of coal workers exhibits a preponderance of
dust over connective tissue, which is irregularly disposed,
together with the occurrence in some cases of a
particular form of emphysema. There is no suggestion
of bronchiolar stenosis, though sometimes the lesions
are more cellular and the coal-bearing phagocytes less
densely packed.

Cytotoxicity
The ingestion by guinea pig alveolar macrophages of

inhaled coal dust containing 2% quartz led to the
formation of phagosomes, but the cell structure was for
the most part well preserved and cell death and debris
were rarely seen (93), while coal dust taken up in vitro
had little effect on dehydrogenase activity (38). However,
extensive epidemiological investigations pursued for
many years at British and German collieries have raised
issues concerning the pathogenicity of airborne dusts
from coal mines of different rank. The initial suggestion
(94) that exposure to high rank (anthracite) dusts
resulted in a higher prevalence of pneumoconiosis than
dusts of lower rank was subsequently explained on the
basis of the mass concentration of respirable dust (95)
and the cumulative effect of dust exposure, although
other factors may be concerned in individual mines (96).
Nevertheless, disparities have been observed between
the attack rate or incidence of pneumoconiosis and the
mineral content, especially quartz, of the airborne dust
(97-99), and high progression was sometimes apparently
associated with low dust concentration or vice versa
(100). This aspect has recently been emphasized by
estimating the probability of developing radiological
category 2 or higher simple pneumoconiosis over a
working life (101). The results showed wide and
unexplained colliery-associated variations which were
not explicable on the basis of quartz content of the
respirable dust in estimated cumulated exposures having
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an average quartz level of 5% and rarely exceeding 10%
of the mixed dust. Only when the level of quartz
exposure was higher were unusual radiological changes
observed, as might be expected from Nagelschmidt's
(47) correlation of lung pathology and mineral content.
The preoccupation with the role of quartz in the

genesis ofCWP nevertheless continues in studies of cell
toxicity as well as of fibrogenesis. The noxiousness of
respirable coal mine dusts, as judged by the TTC test
could not, however, be correlated merely with their
quartz or mineral content (99,102,103). Study of the
surface properties of quartz in coal mine dusts by
scanning Auger spectroscopy and thermoluminesce
suggested that, though the quartz surface may be
contaminated, areas with the electronic structure of
silica remained (104). However, the method of air
sampling may influence the estimate of mineral in the
dust (105) and the issue of mine dust toxicity cannot be
regarded as settled, despite experiments showing
inhibition of quartz toxicity by anthracite (106). Using
the P388D1 cell line (107) toxicity was not defined solely
by the quartz content of the dusts, some being less
harmful than the titanium dioxide control. For high
rank dusts, the kaolin and mica contents related better
to toxicity than quartz, while for low ranks these
mineral constituents were not so related, and the
toxicity varied widely with similar quartz contents; the
possibility of lipid interference in vivo was not considered.
Hemolysis by dust of low rank mines did not correlate
with its total or individual components, while lysis by
dust from high rank pits increased with the amount of
noncoal mineral and its quartz but not kaolin or mica
concentrations (107). Hemolysis and toxicity were thus
poorly correlated and dust hazards could not be assessed
on the basis of one test system applied at different
times. Although noncoal mineral content appeared
important in determining toxicity, the role of quartz was
obscure, while the relationship between mineral content
and toxicity varied markedly between high and low rank
collieries. Another approach (108) relied on in vitro
assessment of L cell growth, a leachate of respirable
particles from a high prevalence mines depressing and
that from a low prevalence mine stimulating cell growth;
total protein is not, however, adequate to determine cell
proliferation, for which DNA measurement is required,
and the important criterion is HOP formation.

Fibrogenesis
The structure of the typical coal dust lesion differs so

strikingly from that of the silicotic nodule as to suggest
an alternative or much modified mechanism for the
genesis of the comparatively minor amount of connec-
tive tissue. The danger from an inhaled dust has
customarily been held to depend on its capacity to
induce pulmonary fibrosis. Since this feature is pro-
nounced after exposure to silica, pneumoconiosis devel-
oping in coal workers was generally attributed to the
siliceous element in the mixed mine dust. However, the

proportion of quartz in respirable coal mine dust is
small, sometimes less than 1% (1), while the quartz
content of lung dust in simple CWP averaged 2.2% in
one series (109) though in another it was a little higher,
even though the mean amount of quartz in the lungs was
only about 0.2 g (110). Certain cases apparently had a
quartz content high enough to produce lesions of
silicotic type (110), yet characteristic nodules did not
occur, but the amount of quartz in the lung dust might
be very small (111). Some lesions show a greater
cellularity and a looser arrangement of dust-bearing
phagocytes but the mineral content of individual lesions
is not known. Previous experience had established the
essential microanatomical and histological similarity of
the simple dust lesions developing in anthracite, steam
or bituminous coal workers from Britain, especially
South Wales, or the U.S.A. (112). Four decades ago
Gough (113) demonstrated that coal trimmers, now
replaced by mechanical loading, inhaled coal dust vir-
tually uncontaminated by minerals from the rock strata,
yet they developed a disease identical with that of coal
workers who were exposed to the mixed dust. Not only
may coal workers develop simple pneumoconiosis in the
presence of very little or possibly no quartz, but indis-
tinguishable lesions (color apart) occur in hematite
workers, and their lungs contained about 1.5 g quartz
on average though in one none was detected (114). Fur-
thermore, lesions resembling those in coal workers have
been found in carbon electrode (115) and carbon black
(116) workers, whose lung dust was almost entirely
devoid of quartz, while the same pathological changes
affected a graphite worker from whose lung no quartz
was recovered (117). Exposure to nepheline dust, a
feldspar composed of silicates but containing no free
silica, led to a pneumoconiosis resembling that of coal
workers in all but color (118). These pathological and
chemical studies on human material combine to minimize
and even eliminate a necessary role for quartz in the
genesis of simple CWP, though prolonged residence in
the lung may permit some solution of quartz and lym-
phatic removal from established lesions cannot be elimi-
nated. The mineral component of airborne dust from coal
mines may nevertheless participate in the pathological
response, but its effect appears neither dominant nor
specific.
The evolution of the coal dust lesion evidently pro-

ceeds in several stages (10,90,112). Laden macrophages
congregate in alveoli at the apex of the acinus and as
they or their contents make contact with the atten-
uated TIype I epithelium it may become disorganized
and expose the interstitium. The reticulin fibers then
lie adjacent to dust cells, which thus appear to be
interstitial as the epithelium reforms over them, though
some new reticulin may form. The sequence is repeated
until whole alveoli are overrun and a cylinder of
consolidated parenchyma encloses the respiratory bron-
chioles. A dual effect may then follow in some lesions,
diminished recoil on expiration and augmented traction
on inspiration, which together afford a mechanical
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explanation for the development of dust-related, proxi-
mal acinar emphysema (119). Lesions exhibiting the
emphysematous change generally show loss of smooth
muscle from the respiratory bronchioles, presumably
the consequence of incarceration and atrophy, so that
expiratory narrowing and shortening are reduced or
abolished, but where smooth muscle persists respira-
tory bronchioles remain more or less normal in size.
Consolidation exaggerates the inspiratory traction on
these airways by adding to the normal force that which
was expended on the consolidated alveoli. The charac-
teristic emphysema can hardly be attributed to elastic
tissue loss, whether by elastase digestion or other means,
since irrespective of the occurrence of emphysema
elastic tissue within the dust aggregates is fragmented.
It does not seem reasonable to invoke local deficiency of
a, antiprotease, since until the late stages there is no
disruption of alveolar walls, the spaces simply being
occupied by dust cells and connective tissue. Loss of
surfactant secreting Type II cells might assist in
condensing the dust lesions. The simple dust lesion of
coal workers and others exposed to a similar hazard may
best be interpreted as a nonspecific reaction to exces-
sive accumulation of dust which becomes immobilized
by a minimal degree of fibrosis.

Experimental studies on the origin of the connective
tissue in coal dust lesions have nevertheless continued
to concentrate on the quartz component. Prolonged
exposure of rats to a high concentration of 10% quartz
mixed with coal-mine dust led to more collagen forma-
tion in the lungs than coal-mine dust alone (120).
Coal-quartz (4%-30% range) mixtures again inhaled by
rats in abnormally high concentrations led to a propor-
tionate increase in collagen production, the mixture
with the lowest concentration of quartz behaving almost
as quartz-free coal dust and the higher concentration
inducing silicotic type lesions (42), as might have been
expected. Natural dusts from coal mines containing 5%
or 15% quartz were no more fibrogenic than coal largely
free from quartz, but artificial mixtures of this latter
coal with the same proportions ofquartz were fibrogenic,
and it was concluded that under natural conditions
inhibitory substances, possibly aluminum compounds,
combined with the surface of quartz particles (121), but
ineffective mixing may also have been responsible for
the difference. The behavior of coal mine dusts has been
assessed in the regional lymph nodes after IP injection
and a two-phase hypothesis proposed (122). Penetration
to the nodes was considered to be determined by
cytotoxicity but unrelated to quartz content and unaf-
fected by PNO, whereas fibrogenecity did depend on
quartz content and was inhibited by PNO. If, however,
penetration of quartz is determined by other constitu-
ent minerals whose concentration varies independently,
the proportion of quartz in the primary and secondary
locations could differ so that the nodal response may
not correspond closely with that in the primary site, as
some findings (123) tend to indicate. It seems peculiar

that in nodes "quartz typical" areas of fibrosis should
occur separately from the remainder of the dust reac-
tion. Further analyses are intended to coordinate the
human and experimental aspects of the responses to
dusts (105).
PNO reduced the fibrogenic response to natural mine

dusts, dusts extracted from colliers' lungs or artificial
mixtures of coal and quartz given intraperitoneally or
intratracheally (124), but long-term treatment of rats
and rhesus monkeys inhaling coal-quartz (40%) mixtures
showed in most experiments no substantial therapeutic
benefit, nor was any reliable effect obtained prophylacti-
cally (125,126). These findings contrast with those in
experimental silicosis, despite the high quartz content
of the dusts used, and offer little prospect of human
application. Aerosols of soluble aluminum compounds
exerted a prophylactic and a therapeutic action on rats
exposed to coal-quartz (17%) mixtures in high concen-
tration, but the curative effect diminished as the silica
content was lowered (55). The beneficial action of coal in
mixtures was attributed to coating of the quartz surface
by soluble substance(s) derived from the mineral matter
in coal. On substituting titanium dioxide for coal there
was no inhibition of the harmful effect of quartz, a
finding which was held to exclude a dilution effect (127),
but electron microscopically titanium dioxide particles
exist as large aggregates that are resistant to disaggre-
gation by sonication and which are thus unable to isolate
admixed quartz particles from cellular contact (128). In
any case, contamination of quartz surfaces in natural
mine dusts was probably incomplete (104). Rabbits
exposed underground in a Welsh steam coal mine failed
to develop fibrosis in the focal aggregates of dust, while
rats exposed to airborne dusts from British coal mines
of widely differing ranks also failed to acquire fibrous
lesions (129,130). The noncoal minerals of mine dust or
the products of cell break down under their load may
react with macrophages to produce the MFF in low
concentration. The application of respirable airborne
dust from coal mines and artificial coal-quartz mixtures
to the macrophage-fibroblast test system for collagen
formation is being made, and the prospect of replacing
the indirect cytotoxicity test with a direct fibrogenicity
assessment merits exploration.

Lipid Involvement
Comparatively little is known about the interaction of

coal mine dust with Type II cells. The levels of total
phospholipid and lecithin were raised in lung washings
from rats after inhalation of carbon dust (131). Although
biochemical studies comparable to those on silica are
lacking, a limited degree of phospholipid accumulation
in alveoli was observed electron microscopically after
mine dust inhalation by rats (66), and the degree of
alveolar lipo-proteinosis varied with different ranks of
coal (129,130). By interference with the macrophage-
particle reaction, lipid accumulation could have a bearing
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on the apparent anomalies in prevalence of CWP at
different mines; it is a factor of which no account has
been taken.
Feedback of lipid from lung to marrow may again

regulate macrophage recruitment and, although an
excess of these cells is required for disposal of coal dust,
their loss is less evident than after uptake of silica and a
correspondingly lower level of lipid activity might be
expected.

Asbestos
Although asbestosis was recognized as long ago as 1907

(132) and descriptions of the human disease followed
(133,134), the magnitude of the risk from asbestos
exposure only became apparent in 1930 (135), since
when the health hazard has loomed large (136).

Penetration of fibers into the respiratory tract consti-
tutes a complex problem (137-139). Fibers up to 200 ,um
may be respirable provided the diameter does not
exceed 3 ,um. Among mechanisms concerned in fiber
deposition, sedimentation and interception probably
cause fibers to alight more proximally in the acinus than
compact particles. Chrysotile fibers, being curved,
present a larger collision area and tend to penetrate less
deeply than the straight amphiboles.

Morphology
Compared with the simple dust lesions of silicosis and

CWP, fiber aggregation and asbestotic fibrosis are less
well defined. Though initially affecting alveoli around
respiratory bronchioles in a fairly circumscribed manner,
parenchymal extension gradually leads to fibrous areas
adjacent to or enclosing nonfibrosed lung tissue which
commonly dilates to form cystic spaces. This honeycomb
pattern is a characteristic feature but the lung is
irregularly affected and large tracts are often spared. In
many cases the distribution of the fibrocystic change is
basal or posterior and sometimes the subpleural zone is
involved. Occasionally the fibrosis assumes a solid
character. Fibers lie both in fibrosed lung and in alveoli,
a minority acquiring a ferroprotein coating to become
asbestos bodies which are often particularly evident in
alveoli. It is generally considered that coated fibers are
no longer harmful (140). The formation of asbestos
bodies evidently depends on the activity of macrophages,
which probably leave small accretions of cytoplasm on
fibers they have failed to ingest completely; shrinkage of
a succession of such deposits is likely to give the body
its beaded appearance though an evenly formed coating
could later fragment.
The uneven distribution of asbestotic fibrosis makes

its quantitation rather imprecise and the choice of
particular areas of lung for routine histological study is
unrealistic. Short of strictly morphometric methods, the
severity of lung involvement may be graded on a simple
visual four-point scale. Fibrosis showed an overall corre-

lation with the content of particles, both coated and
uncoated fiber numbers rising as the extent ofthe fibrosis
increased from nil, through mild, to moderate grades
(141). Uncoated fibers formed about 70% of those seen
optically and comprised 12 to 30% of the total count
determined electron microscopically. The situation dif-
fered in cases with severe asbestosis, where no relation-
ship was evident between either the concentration or
the proportion of uncoated fibers and the form the
lesions took, whether in areas of zero, focal, cystic or
solid fibrosis. The time the mineral had resided in the
lung was also unrelated to the severity of the asbestosis.
There was a striking paucity of chrysotile in the
extracted dust. These variable features of the pulmo-
nary response, including the presence of fibers in
nonfibrosed lung, raised the question of complicating
factors such as the development of chronic inflammatory
states as a consequence of the presence of particles or
the fibrosis to which they gave rise; tuberculosis is now
an uncommon occurrence in asbestosis. Although reten-
tion in the peripheral lower lobes of the lung has been
stressed (142), no attempt was made to relate fiber
concentration to the type and degree of pathological
change. Particles of serpentine or amphibole in lungs of
individuals with asbestosis or mesothelioma were mostly
< 5 ,um long and < 0.5 ,um diameter, chrysotile having
the shortest and finest fibrils and amosite the longest
and widest with crocidolite occupying an intermediate
position, but in all cases the majority of fibers had an
aspect ratio over 10:1 (143). In individual lung speci-
mens from Finland anthophyllite fibers had a mean
length generally < 10 ,m and a diameter < 0.6 ,um
(138).

Cytotoxicity
Chrysotile like silica proved strongly hemolytic but

the amphiboles were relatively inactive (16,144). The
magnesium content of the fiber bore a linear relation-
ship with the degree of lysis and since the silica content
was more or less constant its contribution to hemolysis
could be eliminated (16). Magnesium hydroxide proved
highly lytic and removal of the brucite outer layer of
chrysotile by acid leaching reduced its activity (145).
Silica and glass fiber do not, however, require magnesium
for hemolysis. As with silica, the lytic potential was not
related directly to the surface area of asbestos minerals.
Chrysotile hemolysis could be prevented by sodium
ethylenediaminetetraacetate (EDTA), which is a non-
specific chelator of metal ions, and was even more
effective against brucite. The sialic component of mem-
branes imparts a negative charge to which the posi-
tively charged chrysotile is attracted. Removal of sialic
acid by neuraminidase increased erythrocyte resistance
to lysis by chrysotile, while prior addition of sialic acid
to the fiber had a similar effect. PNO, on the other
hand, exerted little protective effect on hemolysis by
chrysotile, there being no possibility of hydrogen bond-
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ing as suggested for silica. The hemolytic activity of
amphiboles was enhanced in the presence of serum, but
chrysotile and silica were unaffected (146), suggesting
that in vitro and in vivo effects may not be comparable.
On the other hand, adsorption of negatively charged
albumin onto chrysotile inhibited lysis, though as might
be expected it was without effect on silica (22).
Measurement of zeta potential showed that serpen-

tine and amphibole asbestos had surface charges of the
same magnitude but opposite polarity; leaching reduced
this difference of potential, so that hemolysis by chryso-
tile diminished while that by crocidolite increased,
thereby reconciling theoretically the short-term (in
vitro) differences and the long-term (in vivo) similari-
ties of the classes of asbestos (147-149). Contact with
the alveolar lining layer occurs as soon as fibers are
deposited. After treatment with DPL the hemolytic
activity of both groups of asbestos but especially the
amphiboles was diminished in proportion to the zeta
potential, thus suggesting a difference between in vitro
and in vivo behavior. In other hands, adsorption of DPL
liposomes and red cell membranes onto chrysotile
decreased its surface charge and diminished hemolysis,
but the weakly lytic amphiboles did not have the same
pattern of reaction with phospholipids (21,150,151).
Chrysotile hemolysis has been attributed to clustering
of membrane sialoglycoproteins, so as to leave channels
for osmotic attraction of ions but not large molecules
(16,152). However, removal of sialic acid from erythro-
cytes did not effect lysis by chrysotile (153) and the
likely mechanism is electrostatic attraction and phos-
pholipid extraction (150,151).

Relying on loss of peritoneal cells or dye exclusion,
amosite and crocidolite proved much less harmful than
chrysotile, which was as toxic as amorphous silica,
while long fibers were considered to be more deleteri-
ous than short ones (41,154,155). Toxicity to stable cell
lines as well as to peritoneal macrophages was maximal
for fibers - 10 ,um long and - 1.4 ,um diameter
(156-158); other reports confirmed the importance of
fiber length (159-161).
The biochemical consequences of asbestos ingestion

by macrophages vary with fiber type, acid phosphatase
being released into the medium on treatment with
chrysotile (or silica), but not with crocidolite, amosite or
rutile (a crystalline form of titanium dioxide) (162).
Chrysotile, in contrast to silica, permitted the selective
escape of lysosomal enzymes in a dose-dependent manner,
although the total level in cells and medium was
unchanged; nonlysosomal LDH remained intracellular
but its level rose in parallel with the lower range of
chrysotile dosage (163). The distinction between lyso-
somal and cytoplasmic enzyme release is not however
absolute, since chrysotile caused a small escape of
LDH, while amosite, glass fiber and fibrous Dawsonite
released similar amounts of LDH and P-galactosidase,
and crocidolite reversed the ratio of the two enzymes
(21,156). Removal of the magnesium hydroxide layer
from the surface of chrysotile fibers altered the in vitro

biochemical consequences inconsistently, toxicity being
reported as augmented (21,164), dependent on the
proportion of magnesium removed (145) or depressed
(165). A nonhomogeneous loss of magnesium from
chrysotile was found in fibers recovered from human
lung or from alveolar macrophages after ingestion in
vitro (166). PNO did not affect the ultrastructural
response of alveolar macrophages to chrysotile (167),
nor the cytotoxicity of serpentine or amphibole asbestos
(155), but the toxicity caused by exposure of the silicate
surface of chrysotile was suppressed (164). Membrane
interactions with asbestos fibers not only differ from
those with quartz but also vary between the two main
groups and the molecular basis has yet to be established.

Fibrogenicity
Epidemiological evidence implicates all forms of asbes-

tos in the genesis of pulmonary fibrosis in man, but
mixed exposures are common. Progression of asbestosis
sometimes occurred after cessation of exposure to
chrysotile, and radiological evidence of disease occasion-
ally appeared first many years after leaving the mine
(168). All the main types of UICC asbestos samples
induced pulmonary fibrosis by inhalation in rats, but
significant differences were evident in the severity of
response; in sacrificed animals, fibrosis was most pro-
nounced with Canadian chrysotile and anthophyllite,
Rhodesian chrysotile and crocidolite being less active,
and amosite the least fibrogenic, whereas in survivors
only the difference for amosite persisted (169). Progres-
sion continued after removal from exposure. These
results might have been influenced by the length
distributions of the UICC fibers, especially amosite,
since reference samples were subject to some variation
(170). Rhodesian chrysotile proved much more fibrogenic
to rats than amosite or crocidolite despite much greater
retention of the two amphiboles, and these relationships
were the same in respect of the mass and the number of
fibers in each type (171). While these findings suggested
that chrysotile was distinctly more fibrogenic than
amphiboles, the proportion of long chrysotile fibers
considerably exceeded that of crocidolite or amosite.

In rats and guinea pigs exposed to amosite clouds of
equal mass concentration, much more fiber was deposited
when the length was < 11 ,m than when > 11 ,um, but
there was no preferential deposition between individual
lobes of the lungs. The subsequent pulmonary reaction
proved to be mineral with short fibers but prominent
with long ones (172). It may be suggested that after
ingestion short fibers were removed by proximal migra-
tion of alveolar macrophages, but long ones could not be
so eliminated and remained in the vicinity of respiratory
bronchioles to induce fibrosis. IP administration also
emphasized the importance of fiber length in the
genesis of asbestotic fibrosis (173). Using mouse pleura
as the target for chrysotile, long fibers led to the
formation of much larger granulomata than did short
ones (174) and similar results were obtained with glass
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fiber given intrapleurally and intraperitoneally to rodents
(175). It is worth recalling that attention had been
drawn to the importance of fiber length in asbestosis by
Gardner in 1938 (176) and Vorwald et al. in 1951 (140).
Fibrogenicity by asbestos and man-made mineral fiber
thus appears to depend to a large extent on fiber shape,
but the surface properties of chrysotile with its peculiar
outer layer may contribute an additional physicochemical
component, and it would be useful to know whether
removal of magnesium affects its fibrogenesis by
inhalation. The current concern with long fibers over-
looks a possible role for the short ones. Since most
fibers recovered from the lungs of exposed humans are
< 5 ,um long (142,143) macrophages are capable of
ingesting them completely and of assisting their
translocation, while toxic effects will be low. Small
amounts of short fibers may be cleared via the ciliary
escalator, but larger quantities may well accumulate in
alveoli related to respiratory bronchioles and there
initiate a low grade progressive reaction. The manner of
accumulation then resembles that of coal particles,
though the fibrogenic potential of fibers may be greater.
It is, therefore, unjustifiable to relegate short fibers to
an insignificant role in the genesis of asbestotic fibrosis.
The proximate mechanism of fibrosis by mineral

fibers has yet to be established. Mechanical disturbance
of the macrophage cytoskeleton, nuclear or cytoplasmic,
by long and partially ingested fibers, especially during
cellular movement, cannot be discounted. Surface prop-
erties appear to play a part in the response to chrysotile,
but the availability of reactive groups on the surfaces of
amphiboles in their natural state is not clear. Cytoplasmic
enzyme release seems an adequate basis for fibrosis,
since extracts of disintegrated normal macrophages had
little or no effect on fibroblasts in the in vitro system
(58). Too exclusive a concentration on macrophages
detracts from the significance of fibroblasts and two
further mechanisms merit consideration. The compara-
tively low toxicity of asbestos to macrophages permits
longer contact with cell structures than does silica and
the fibrogenic response is less prominent. The forma-
tion of a MFF might occur at a slower rate and in lower
concentration; recent evidence supports this supposi-
tion in that chrysotile proved as potent as silica (61) and
short fibers of amosite were particularly active (177).
An alternative explanation invokes the phenomenon of
anchorage dependence. Fibroblasts in suspension cul-
ture achieved a maximum growth on long glass fibers
but failed to grow on fibers - 20 ,um long (178) and it
appeared that linear extension offered a stimulus for
division of anchored fibroblasts (179). To establish the
anchorage effect demands the application of cell kinetic
techniques to measure fibroblasts proliferation along
with the estimation of collagen formation, but macro-
phage participation is not excluded. Deployment of the
diffusion chamber technique, in which UICC chrysotile
and peritoneal macrophages were implanted IP, demon-
strated greater surrounding fibrosis than with macro-
phages alone, the response being maximal at 2 to 4

weeks and subsiding to control levels at 4 months (76).
The initial fibrosis presumably reflected the lesser tox-
icity of asbestos, which thus had longer to react with
the cells than in the case of silica. These results not only
stress macrophage involvement in asbestos fibrogenesis
and the formation of a diffusible factor, but also
re-emphasize the necessity for macrophage recruitment
to sustain the response.

Lipid Participation
Lung extracts from rats inhaling chrysotile showed

changes in surface properties (83) and, as with silica
(66,80), hyperplasia of Type II alveolar epithelial cells
occurred. In these respects, compact and fibrous parti-
cles evidently correspond qualitatively, though differing
quantitatively, and fiber isolation from cells may be a
consequence; amphiboles require further analysis.

Carcinogenicity
Although there is no reliable evidence of increased

prevalence of pulmonary carcinoma in men with silicosis
(180) or CWP (181,182), exposure to asbestos carries a
peculiar liability as well as to mesothelioma of the
pleura and peritoneum. The subject is vast and epidemio-
logical aspects are covered in other accounts (183,184).

All types of asbestos fiber are potentially carcino-
genic and the combination of cigarette smoking and
asbestos exposure exerts a multiplicative effect (185,
186). Amphiboles and chrysotile were capable of induc-
ing lung tumors, many malignant, in rats by inhalation
exposure, but few mesotheliomata were encountered
in each group; chrysotile carried the highest carcino-
genicity (169,171). As with hemolytic activity and cyto-
toxicity, magnesium depletion reduced the capacity of
chrysotile, given intrapleurally, to induce mesotheliomata
(145), but the role of magnesium cannot be considered
crucial in view of the carcinogenic ability of crocidolite.
Asbestosis and the development oflung tumors showed a
positive correlation both in man (187) and in animals (169).

Asbestos fibers retain their carcinogenicity after
removal of naturally associated hydrocarbons, and there
is no evidence to suggest that carcinogenic metals such
as nickel, cobalt or chromium, contaminating asbestos
are, in the amounts present, responsible. In vitro
adsorbed polycyclic aromatic hydrocarbons may never-
theless be conveyed to microsomes or lipid vesicles
(188). The composition and structure of the asbestos
types are so varied that some other characteristic
evidently determines the potential for neoplasia, and
the most important factor so far identified is that of
fiber dimensions, as also obtained in regard to cytotoxic-
ity and to fibrogenicity. The main evidence in regard to
mesothelioma derives from application to the pleura of a
wide range of fibrous minerals including UICC asbestos,
fibrous glass, aluminum oxide and other man-made
substances (189-192). Serpentine and amphibole asbes-
tos yielded high incidences of pleural mesothelioma, as
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did fibrous glass and aluminum oxide whiskers, and it
was concluded that the major factor in both carcinogene-
sis and fibrogenesis was a durable fibrous shape in a
narrow size range. Fibers S 1.5 ,um diameter (optimum
< 0.25 ,um) and : 8 ,um long possessed the highest
probability of tumor production. Since implantation and
injection introduce particles by unnatural routes,
confirmation is required from inhalation experiments
that employ fibers graded by length and with a diameter
optimal for penetration to subpleural alveoli. The longer
ones and those with a greater collision area may
concentrate in the larger airways and lead to bronchogenic
carcinoma, while slimmer and shorter ones may reach
the pleura and institute a mesothelial reaction. The
mass of fiber necessary for carcinogenesis remains a
problem, the uncoated fiber content of the lung seeming
to be less significant in the genesis of neoplasia than of
fibrosis (141,193). Mesothelioma may indeed ensue from
brief exposure to asbestos, neighborhood or domestic,
and after a long latent period.

Comment
Attention has been confined to the primary noxious-

ness of mineral particles, but secondary factors may
cooperate and aggravate the in vivo responses. Compli-
cated pneumoconiosis of coal workers and of silicotics
sometimes exhibits a tuberculosis component, though
nonspecific viral and bacterial infection may participate.
Immunological consequences occur in some though not
all cases, though a genetic factor is not now believed to
affect individual susceptibility to pneumoconiosis.

Differences are apparent in the primary responses,
human and animal, to silica, coal and asbestos. In vitro
reactions between particles and cells are intended to
determine whether short-term behavior reliably fore-
casts the long-term consequences in vivo. Disparities
have emerged between hemolytic and cytotoxic assays
in regard to a range of minerals, both compact and
fibrous (107,144,194,195). Despite claims to the contrary
(196), a poor correlation exists between lytic ability
and fibrogenicity, especially in respect of mixed dusts.
Hemolysis and enzyme release from macrophages reflect
membrane damage, but cytoplasmic enzymatic activity
appears unable to account for fibrosis (58). The corre-
lation between cytotoxicity and fibrogenic response is
likewise imprecise, notably with particles exerting a
moderate effect in vivo, where prediction would be par-
ticularly valuable. Cells of natural origin may react
differently to some of the stable cell lines, in which for
instance quartz induced no damage though all UICC
samples of asbestos were toxic (197); such lines thus
appear to be of dubious value in regard to fibrogenicity.
Ibxicity is probably best indicated by cell death, which can
be quantified, but toxic dusts are not always fibrogenic.

Vital reactions to inhaled particles are not confined to
macrophages, but include the alveolar epithelium. Stim-
ulation of Type II cells leads to lipidosis, which may
vary in severity according to the particles' nature and

may well modify fibrogenesis by isolating them from
cells. Furthermore, macrophage recruitment consti-
tutes a systemic feature of the in vivo response (88),
which cannot be duplicated in vitro and may account for
divergencies, while in culture particles cannot be
eliminated.

Fibrous particles known to be carcinogenic by intra-
pleural application or injection are also toxic to stable
cell lines (161,192,197), though toxicity is exhibited by
particles which are only fibrogenic. Fiber length clearly
plays a role in both toxicity and carcinogenicity, but
again the in vitro-in vivo analogy may be inappropriate,
since under natural conditions fibers reach the lung and
pleura by other than parenteral means and in much
smaller quantity, as well as making immediate contact
with the alveolar lining layer. Certain rodents tend to
develop neoplasia after parenteral introduction of solid
particles and other objects, so that care is needed in
applying the results of such studies to human disease.
Bronchogenic carcinoma arises from epithelium not the
mononuclear phagocytic system and a prerequisite in
respect of asbestos appears to be the development of
fibrosis. Mesothelioma commonly has a prominent mes-
enchymal component and similar considerations may
apply, although mesothelium could react independently
since it is both phagocytic and releases a fibrogenic
factor.
On present evidence it therefore seems prudent to

reserve judgment on the validity of short-term in vitro
assessment as a means of identifying particles which
may prove deleterious to man by inhalation.
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